
Content Page

1 Introduction 2
1.1 Overall process 2
1.2 Terminology 3
1.3 Developer assets 3

2 Pushing 5
2.1 Pushing entire project 5
2.2 Pushing single asset 7
2.3 SnapLogic Pipelines involved 8

3 Pulling 9
3.1 Pulling entire project 10
3.2 Pulling single asset 11
3.3 SnapLogic Pipelines involved 13

4 Bitbucket CI/CD configuration 14
4.1 CI/CD assets 15
4.2 SnapLogic Pipelines involved 16

5 Full Commit and Reviewing process 16
5.1 Committing the new changes 17
5.2 Creating Pull Request 20
5.3 Pipeline comparison 21
5.4 Approving and merging Pull Request 24



1 Introduction

A video showing a full demonstration of the CI/CD solution can be seen here:
https://snaplogic.box.com/s/y5fimpt77j2yqpwcqwxpbnfhwhhars5b

1.1 Overall process

This documentation aims to cover the entire proposed CI/CD process outlined in the image
below.

The implementation and documentation will enable the following capabilities

● Ability to source control any SnapLogic Pipeline, Task and Account
○ Commit entire project
○ Commit individual asset
○ Specify commit message
○ Specify branch name

● Automatic Bitbucket project, repository and branch creation
● Automatic Bitbucket CI/CD file upload and Pipeline enablement
● Automatic SnapLogic project space, project and asset creation

https://snaplogic.box.com/s/y5fimpt77j2yqpwcqwxpbnfhwhhars5b


● Ability to pull assets from Bitbucket to a SnapLogic project
○ Revert changes based on specific branch
○ Revert entire project or specific asset

● SnapLogic Compare Pipeline review
● Bitbucket Pull Request creation, approval and merge
● Automatic promotion of assets from development to production

1.2 Terminology

The relationship between SnapLogic organizations, project spaces projects and Bitbucket
projects, repositories and branches are as follows.

● A SnapLogic project space (belongs to a SnapLogic organization) will be mapped to a
Bitbucket repository

● A SnapLogic project (belongs to a SnapLogic project space) will be mapped to a
directory/folder within that repository

● Each repository will have 1 or more Bitbucket branches. By default, the master branch
will reflect the state of assets in the SnapLogic production organization. Additional
branches (feature branches) inherits the master branch and will reflect various new
development efforts in the SnapLogic development organization

1.3 Developer assets

Each SnapLogic user that should be involved in committing or pulling assets to the Bitbucket
space could have its unique and individual assets. The template of the assets and tools involved
in the process can be found under the Company_dev/Administration/User_Bitbucket project.

It is recommended that each user duplicates (Export -> Import) the User_Bitbucket project and
replaces User with its unique name.

For impersonating the individual user on Bitbucket (e.g for author of commits), the Account used
in the SnapLogic Pipelines need to refer to the user’s individual Bitbucket Account. For each
Pipeline contained in the User_Bitbucket project, the single Snap holds a Pipeline Parameter
called bitbucket_account. This needs to be replaced for each user’s copy of the User_Bitbucket
project, to reflect the path to the individual's own Bitbucket Account.

To create a new Bitbucket Account, follow these steps

1. Create a Bitbucket OAuth as instructed here
https://support.atlassian.com/bitbucket-cloud/docs/use-oauth-on-bitbucket-cloud/#Create
-a-consumer

The following Callback URL setting should be used:
https://elastic.snaplogic.com/api/1/rest/admin/oauth2callback/rest

https://support.atlassian.com/bitbucket-cloud/docs/use-oauth-on-bitbucket-cloud/#Create-a-consumer
https://support.atlassian.com/bitbucket-cloud/docs/use-oauth-on-bitbucket-cloud/#Create-a-consumer
https://elastic.snaplogic.com/api/1/rest/admin/oauth2callback/rest


The below Permissions should be applied

2. Copy the key and secret of the created consumer
3. In SnapLogic, create a REST OAuth2 Account under the user’s individual project that

was created earlier.

For Client ID, paste the key
For Client secret, paste the secret
Check Header authentication
For OAuth2 Endpoint, enter https://bitbucket.org/site/oauth2/authorize
For OAuth2 Token, enter https://bitbucket.org/site/oauth2/access_token
For Grant Type, select authorization_code

4. Press Authorize and wait for the token to be retrieved
5. Apply and save the Account

Although covered in greater detail in the upcoming sections, the User_Bitbucket project holds
these four Pipelines, each containing a single Snap



1. Commit Project - Commits any Pipelines, Accounts and Tasks within the specified
SnapLogic project, to the specified branch in Bitbucket

2. Commit Asset - Commits the specified asset within the specified SnapLogic project, to
the specified branch in Bitbucket

3. Pull Project - Reads any Pipelines, Accounts and Tasks from the specified branch in the
specified Bitbucket, to the specified project and organization of SnapLogic

4. Pull Asset - Reads the specified asset from the specified branch in the specified
Bitbucket, to the specified project and organization of SnapLogic

For each Pipeline, each user needs to update the bitbucket_account Pipeline Parameter in the
respective Snaps, matching the path to their own Bitbucket Account.

2 Pushing
Pushing SnapLogic Pipelines to Bitbucket essentially involves two steps

1. Creation of Bitbucket project and Bitbucket repository, as well as commit of CI/CD assets
on master branch. This first step only happens if this was the first time an asset was
pushed for the particular SnapLogic project. The CI/CD assets pushed in this step is
covered in greater detail in the Bitbucket CI/CD configuration section.

2. Read asset from SnapLogic and push to Bitbucket

2.1 Pushing entire project

The Commit Project Pipeline in the user’s User_Bitbucket project is responsible for triggering
the process of pushing the assets for an entire project to Bitbucket. It consists of a single
Pipeline Execute Snap



The following parameters are supported

● workspace - the name of the Bitbucket workspace ID/slug. For example
companyconnect

● source_org - the name of the SnapLogic organization for where to find the assets to
push. For example CompanyGlobal_dev

● source_space - the name of the SnapLogic project space in where the project is
located. For example ExampleProjectSpace

● source_proj - the name of the SnapLogic project in where the assets are located. For
example ExampleProject

● branch - the name of a Bitbucket branch. The branch will exist in the repository called
“ExampleProject” (name of the source_projc) which sits in the “ExampleProjectSpace”
(name of the source_space). If the branch does not already exist, it will be created
automatically. For example feature or myNewFeature

● bitbucket_account - the relative path to the user’s Bitbucket Account (REST OAuth2
Account). This will be the author of any commits made. For example,
../User_Bitbucket/UserBitbucket.



● include_task - whether or not to push SnapLogic Tasks to the repository
● include_account - whether or not to push SnapLogic Accounts to the repository
● message - an optional commit message that will be reflected in Bitbucket. For example

All assets

2.2 Pushing single asset

The Commit Asset Pipeline in the user’s User_Bitbucket project is responsible for triggering the
process of pushing a single asset within a project to Bitbucket. It consists of a single Pipeline
Execute Snap

The following parameters are supported

● workspace - the name of the Bitbucket workspace ID/slug. For example
companyconnect

● source_org - the name of the SnapLogic organization for where to find the assets to
push. For example CompanyGlobal_dev



● source_space - the name of the SnapLogic project space in where the project is
located. For example ExampleProjectSpace

● source_proj - the name of the SnapLogic project in where the assets are located. For
example ExampleProject

● asset - the name of the SnapLogic asset (Pipeline, Task or Account) within the above
specified project. This will be the single and only asset pushed to Bitbucket. For example
ExamplePipeline

● branch - the name of a Bitbucket branch. The branch will exist in the repository called
“ExampleProject” (name of the source_projc) which sits in the “ExampleProjectSpace”
(name of the source_space). If the branch does not already exist, it will be created
automatically. For example feature or myNewFeature

● bitbucket_account - the relative path to the user’s Bitbucket Account (REST OAuth2
Account). This will be the author of any commits made. For example,
../User_Bitbucket/UserBitbucket.

● include_task - whether or not to push SnapLogic Tasks to the repository
● include_account - whether or not to push SnapLogic Accounts to the repository
● message - an optional commit message that will be reflected in Bitbucket. For example

Fixed issue with Pipeline

2.3 SnapLogic Pipelines involved

● 1.0 Main - SL Project to Bitbucket. Both Pipelines used above take advantage of the
main Pipeline that sits in CompanyGlobal_dev/Administration/CICD-BitBucket. The
Pipeline can be found here:
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=6001b78a2c05498
aaefc3e34

○ Immediately, the 1.1 Create Project and Repo Pipeline is called
○ Router then checks whether the user wanted to include Tasks and Accounts
○ Each route will list all SnapLogic assets within the specified SnapLogic project

using the SnapLogic List Snaps.
○ For each listed asset, the name of the asset is checked against a potential

Pipeline Parameter value for a single asset. This is to exclude any non matched
assets if the Pipeline was started from the Commit Asset Pipeline, intended to
only commit a single asset.

○ A Conditional Snap is used to determine the type of each asset, e.g Pipeline,
Task or Account.

○ For each included asset, the 1.2 SL Asset to Bitbucket Pipeline is called
● 1.1 Create Project and Repo. The purpose of this Pipeline is to create a Bitbucket

project and repository, as well as adding CI/CD files and initializing the Bitbucket CI/CD
Pipeline feature. This Pipeline can be found here:
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd7839a3c9d3c7
5891559a

○ Calls the Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/workspaces/

https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=6001b78a2c05498aaefc3e34
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=6001b78a2c05498aaefc3e34
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd7839a3c9d3c75891559a
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd7839a3c9d3c75891559a
https://developer.atlassian.com/bitbucket/api/2/reference/resource/workspaces/%7Bworkspace%7D/projects#post


%7Bworkspace%7D/projects#post) to create a new Bitbucket project, mapping to
the SnapLogic project space. In the Mapper, a Bitbucket project Key is created
from the first four characters of the project space name. If this call fails, it is
assumed that the project already exists.

○ Calls the Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/
%7Bworkspace%7D/%7Brepo_slug%7D#post) to create a new Bitbucket
repository, mapping to the SnapLogic project. If this call fails, it is assumed that
the repository already exists

○ If a new repository was created, it will call the Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/
%7Bworkspace%7D/%7Brepo_slug%7D/src#post) to upload two files in a new
commit. The two files will be used for Bitbucket CI/CD and are covered in a later
section

○ After having uploaded the two files, a new call is made to the Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/
%7Bworkspace%7D/%7Brepo_slug%7D/pipelines_config) to enable the
repository for CI/CD. This is described in more detail here:
https://bitbucket.org/product/features/pipelines

● 1.2 SL Asset to Bitbucket. This Pipeline will read the assets from SnapLogic and push
them to Bitbucket in commits. This Pipeline can be found here:
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd1452e731db40
8a73498b

○ Router routes to a particular SnapLogic Read Snap, based on the asset type (e.g
Pipeline, Account and Task)

○ SnapLogic Read Snaps are used to extract the JSON object of the particular
asset.

○ A Mapper Snap is used to encode and stringify the JSON object to make it ready
for the next Snap

○ The Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/
%7Bworkspace%7D/%7Brepo_slug%7D/src#post) is then used to create an
actual commit with the encoded JSON SnapLogic asset.
Note: if the asset already exists in the repository, it will be overwritten if
there has been any changes to the asset.

3 Pulling
Pulling refers to the process of reading assets from a Bitbucket repository and then updating or
creating them as SnapLogic assets. This can either be done manually by a user, as part of
reverting to a previous versioned copy of an asset, or to create a new temporary project where
the Pipelines correspond to different versions, so that two Pipelines can be compared using the
visual tool. This will be described in more detail under the Reviewing section.

https://developer.atlassian.com/bitbucket/api/2/reference/resource/workspaces/%7Bworkspace%7D/projects#post
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D#post
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D#post
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/src#post
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/src#post
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/pipelines_config
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/pipelines_config
https://bitbucket.org/product/features/pipelines
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd1452e731db408a73498b
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd1452e731db408a73498b
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/src#post
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/src#post


Much of the Pipeline logic described in this section will also be used when the CI/CD automated
processes promote assets from the development organization to the production organization.
This is covered in a later section.

3.1 Pulling entire project
The Pull Project Pipeline in the user’s User_Bitbucket project is responsible for triggering the
process of reading the assets from Bitbucket and creating or updating them in SnapLogic. It
consists of a single Pipeline Execute Snap

The following parameters are supported

● workspace - the name of the Bitbucket workspace ID/slug. For example
companyconnect



● target_org - the name of the SnapLogic organization for where the assets should be
created or updated. For the automated promotion of assets, this will default to
CompanyGlobal_prod. But for the manual operation covered in this section, it will
typically be CompanyGlobal_dev.

● target_space - the name of the SnapLogic project space in where the project is located.
For example ExampleProjectSpace

● repo - the name of the Bitbucket repository for where the assets are located. This should
always map to the SnapLogic project. For example ExampleProject

● target_proj - the name of the SnapLogic project to where the assets should be created
or updated. There are two different use cases for this property

○ When the target_proj is set to equal the repo, the logic of this operation becomes
a revert. It will look at the Bitbucket repository, extract the assets and create and
update the assets in the project where the assets originally existed from. This can
be done if a user wants to replace an updated or removed asset with what exists
on a particular branch in the repository.

○ When the target_proj is different to the repo, the logic of this operation becomes
a copy/mirror. It will look at the Bitbucket repository, extract the assets and create
and update the assets in the project that will be used as a reference to compare
the new assets. If the project does not exist, it will be automatically created. In
most cases, this will be used together with specifying the branch as master.

● branch - the name of a Bitbucket branch. This must be an existing branch.
● bitbucket_account - the relative path to the user’s Bitbucket Account (REST OAuth2

Account). For example, ../User_Bitbucket/UserBitbucket.
● include_task - whether or not to pull SnapLogic Tasks from the repository
● include_account - whether or not to pull SnapLogic Accounts from the repository
● include_pipeline - whether or not to pull SnapLogic Pipelines from the repository
● update_account - whether or not to replace the existing version of the asset if it exists

already
● update_task - whether or not to replace the existing version of the asset if it exists

already

3.2 Pulling single asset
The Pull Asset Pipeline in the user’s User_Bitbucket project is responsible for triggering the
process of reading a single asset from Bitbucket and creating or updating them in SnapLogic. It
consists of a single Pipeline Execute Snap



The following parameters are supported

● workspace - the name of the Bitbucket workspace ID/slug. For example
companyconnect

● target_org - the name of the SnapLogic organization for where the asset should be
created or updated

● target_space - the name of the SnapLogic project space in where the project is located.
For example ExampleProjectSpace

● repo - the name of the Bitbucket repository for where the asset is located. This should
always map to the SnapLogic project. For example ExampleProject

● target_proj - the name of the SnapLogic project to where the asset should be created or
updated. There are two different use cases for this property

○ When the target_proj is set to equal the repo, the logic of this operation becomes
a revert. It will look at the Bitbucket repository, extract the asset and create and
update the asset in the project where the asset originally existed from. This can
be done if a user wants to replace an updated or removed asset with what exists
on a particular branch in the repository.

○ When the target_proj is different to the repo, the logic of this operation becomes
a copy/mirror. It will look at the Bitbucket repository, extract the asset and create



and update the asset in the project that will be used as a reference to compare
the new asset. If the project does not exist, it will be automatically created. In
most cases, this will be used together with specifying the branch as master.

● branch - the name of a Bitbucket branch. This must be an existing branch.
● bitbucket_account - the relative path to the user’s Bitbucket Account (REST OAuth2

Account). For example, ../User_Bitbucket/UserBitbucket.
● include_task - whether or not to pull SnapLogic Tasks from the repository
● include_account - whether or not to pull SnapLogic Accounts from the repository
● include_pipeline - whether or not to pull SnapLogic Pipelines from the repository
● update_account - whether or not to replace the existing version of the asset if it exists

already
● update_task - whether or not to replace the existing version of the asset if it exists

already

3.3 SnapLogic Pipelines involved

● 2.0 Main - Migrate Assets To SL. Both Pipelines used above take advantage of the
main Pipeline that sits in CompanyGlobal_dev/Administration/CICD-BitBucket. The
Pipeline can be found here:
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd1456a66cd47fc
35b7935

○ Immediately, the 2.1 Upsert Space And Project Pipeline is called
○ Router checks whether the user wanted to include Pipelines, Tasks and Accounts
○ Each route will call the 2.2 Read Assets Pipeline, passing the type of asset.

● 2.1 Upsert Space And Project. The purpose of this Pipeline is to create the SnapLogic
project space and project. The Pipeline can be found here:
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd145bfbb01ae54
875676c

○ Lists all SnapLogic project spaces using the SnapLogic List Snap
○ Searches for a match
○ If no match found, creates a new project space using the SnapLogic Create Snap
○ Lists all SnapLogic projects using the SnapLogic List Snap
○ Searches for a match
○ If no match found, creates a new project using the SnapLogic Create Snap

● 2.2 Read Assets. This Pipeline will find and list all the assets from Bitbucket for the
specified asset type. The Pipeline can be found here:
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd1453d9ea7bc6
20a996ba

○ The Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/
%7Bworkspace%7D/%7Brepo_slug%7D/refs/branches) is used to retrieve a list
of all open branches for the specified repository.

○ A Filter Snap is used to exclude all but the specified branch from the list

https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd1456a66cd47fc35b7935
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd1456a66cd47fc35b7935
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd145bfbb01ae54875676c
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd145bfbb01ae54875676c
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd1453d9ea7bc620a996ba
https://elastic.snaplogic.com/sl/designer.html?v=c5d80f#pipe_snode=5ffd1453d9ea7bc620a996ba
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/refs/branches
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/refs/branches


○ A hash value is extracted from the branch response. In Bitbucket, this hash is
required to be used to query for assets within a repository.

○ For the matched branch, the Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/
%7Bworkspace%7D/%7Brepo_slug%7D/src/%7Bcommit%7D/%7Bpath%7D) is
used to retrieve a list of all files for the specified branch (hash value) for the
specified asset type

○ As it's not guaranteed there actually exists assets for each asset type in the
branch of the repository, an Error View is used to ignore any 404 Not Found
responses from the Bitbucket API

○ Each asset in the repository is split by a JSON Splitter and a hash is extracted
from each asset.

○ A Filter Snap is used to only match a specific asset, if the user had requested a
Pull Asset operation.

○ A Router Snap is used to direct the file to an individual Pipeline, each handling its
own type of assets

● 2.2.1 Upsert Pipeline To SL, 2.2.2 Upsert Account To SL and 2.2.3 Upsert Task To
SL. These three Pipelines are very similar, with the main difference being the Asset Type
between the Metadata Snap Packs. The Pipelines can be found here:
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd1457e76eadc4
05d0f2e3,
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd145bcfb5a379
e64bbc50 and
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd14544097658
bb14647bb

○ The Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/
%7Bworkspace%7D/%7Brepo_slug%7D/src/%7Bcommit%7D/%7Bpath%7D) is
called to retrieve the file content of the particular asset for a specific asset type

○ The retrieved file name is joined with the list of existing assets for the asset type,
using a SnapLogic List Snap and a Join Snap.

○ Based on a match or not, a Router looks at the user’s update parameter to
determine whether to skip, create or update the asset in the target project

○ SnapLogic Create or Update Snaps are used to potentially update or create the
asset in the target project

4 Bitbucket CI/CD configuration
Bitbucket provides a feature called Pipelines, used to deliver CI/CD processes. With this
feature, Bitbucket will pick up any successful Pull Request on the master branch. The Bitbucket
Pipeline will invoke a script that calls a SnapLogic Pipeline exposed as a Task. The idea of the
SnapLogic Pipeline is to promote the assets relevant for the Pull Request to the production
organization.

https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/src/%7Bcommit%7D/%7Bpath%7D
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/src/%7Bcommit%7D/%7Bpath%7D
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd1457e76eadc405d0f2e3
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd1457e76eadc405d0f2e3
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd145bcfb5a379e64bbc50
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd145bcfb5a379e64bbc50
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd14544097658bb14647bb
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd14544097658bb14647bb
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/src/%7Bcommit%7D/%7Bpath%7D
https://developer.atlassian.com/bitbucket/api/2/reference/resource/repositories/%7Bworkspace%7D/%7Brepo_slug%7D/src/%7Bcommit%7D/%7Bpath%7D


4.1 CI/CD assets
As mentioned in section 2.3, the 1.1 Create Project and Repo Pipeline creates the Bitbucket
project and repository as well as pushes two files to the master branch, and finally enables the
Bitbucket Pipeline feature.
Both files reside under CompanyGlobal_dev/Administration/CICD-BitBucket and are described
below

● bitbucket-pipelines.yml - Bitbucket specific descriptor that holds the relevant
information for the Bitbucket Pipelines to know when and how to react to changes.

The above configuration tells Bitbucket to execute a step called Promotion on changes
on the branch master. Specifically, the script runPromotion.sh should be executed.

● runPromotion.sh - this script calls the Pipeline PromotionRequest through a Triggered
Task called PromoteAssets.

It passes the following Bitbucket specific variables as HTTP headers (Pipeline
Parameters)

○ WORKSPACE: The name of the Bitbucket workspace where the Pull Request
happened, for example companyconnect.

○ PROJECTKEY: The four character Key of the Bitbucket project
○ REPO: The repository of where the Pull Request happened, e.g ExampleProject.

This will directly map to a SnapLogic project.
Additionally, an Authorization header is passed to authenticate the request.

To make updates that should be reflected on any new project, update the two files stored under
CompanyGlobal_dev/Administration/CICD-BitBucket. For changes on existing repositories,
enter Bitbucket and navigate to the files on the master branch.
NOTE: As any newly created branch will inherit the master branch, every branch will also
have the two above files in the root directory. However, they will not do anything as they
are restricted to be triggered on the master branch.



4.2 SnapLogic Pipelines involved
● PromotionRequest. This Pipeline is invoked through the Triggered Task

PromoteAssets, under CompanyGlobal_dev/Administration/CICD-BitBucket. The
Pipeline can be found here:
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd8ba1a04bb17
1a8a7dd15

○ The Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/workspaces/
%7Bworkspace%7D/projects/%7Bproject_key%7D) is used to retrieve the full
name of the SnapLogic project space, extracted from the four character Key that
was passed from the Bitbucket Pipeline (PROJECTKEY)

○ The Bitbucket API
(https://developer.atlassian.com/bitbucket/api/2/reference/resource/workspaces/
%7Bworkspace%7D) is used to retrieve the full name of the SnapLogic project,
extracted from the URL-friendly repository name that was passed from the
Bitbucket Pipeline (REPO)

○ A Join Snap is used to merge the two returned project space and project names
together

○ Pipeline Execute Snap is used to call the 2.0 Main - Migrate Assets To SL
Pipeline. That Pipeline is covered under section 3.3. For invoking the Pipeline,
CompanyGlobal_prod is used as the target SnapLogic organization.

NOTE: The Pipeline Parameter for bitbucketAccount should be updated to an
Account that is able to read data from all users’ repositories.

5 Full Commit and Reviewing process
This section assumes that one or several initial commits have been made already to a new
repository, following the information and instructions from a previous section. The purpose of
this section is to focus on the Bitbucket specific actions, as well as options for reviewing Pipeline
changes manually.

As there would be no comparison opportunity on a fresh new project, we will assume there is
already a project running in production, with the relevant assets already existing on the master
branch. The task is now to do a few changes in development, pushing them to a new feature
branch on Bitbucket, creating a Pull Request, having someone reviewing and merging our
changes to master, with Bitbucket finally promoting the assets to production.

Below is the state of assets for our project, with exactly the same assets in both
CompanyGlobal_dev as well as CompanyGlobal_prod

https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd8ba1a04bb171a8a7dd15
https://elastic.snaplogic.com/sl/designer.html?v=168e8a#pipe_snode=5ffd8ba1a04bb171a8a7dd15
https://developer.atlassian.com/bitbucket/api/2/reference/resource/workspaces/%7Bworkspace%7D/projects/%7Bproject_key%7D
https://developer.atlassian.com/bitbucket/api/2/reference/resource/workspaces/%7Bworkspace%7D/projects/%7Bproject_key%7D
https://developer.atlassian.com/bitbucket/api/2/reference/resource/workspaces/%7Bworkspace%7D
https://developer.atlassian.com/bitbucket/api/2/reference/resource/workspaces/%7Bworkspace%7D


The design of our ExamplePipeline looks like below

It is a Pipeline with three Snaps, including a Mapper Snap with a single Expression in the
Mapping table.

5.1 Committing the new changes

During a new development effort, the Pipeline has been updated, adding a JSON Formatter
Snap after the REST Post Snap, as well as adding a second row to the Mapper’s Mapping table



Additionally, a new Pipeline has been created, called SecondPipeline. To commit the new assets
to Bitbucket, the user has navigated to its personal Commit Project Pipeline (rather than
committing each asset individually with the Commit Asset Pipeline)

The below image shows the settings of the Commit Project Snap in the Pipeline, specifying the
location of the SnapLogic project space, project, as well as the name for the new branch. A
message has been added to identify the purpose of the commit.



When completed, the Bitbucket repository will look as below. Note that the image is showing a
navigated view where the user has entered the pipelines folder, as those were the assets
updated and created for this particular commit.

As can be seen in the image, the new and updated assets are under the newly automatically
created myNewFeature branch.



5.2 Creating Pull Request

The next step is to create a Pull Request, with the intention of merging the updates to the
master branch (that holds the truth of the CompanyGlobal_prod SnapLogic organization.)

Navigate to the Bitbucket repository’s Pull Request Tab and press Create pull request.

We can see that three assets have changed between the master branch and our new feature
branch.

As expected, ExamplePipeline has been modified, and SecondPipeline has been added. Please
note that one field has changed on the ExampleTask: the codegen_url property. This is a
dynamic property. The 1.2 SL Asset to Bitbucket Pipeline could be modified to ignore certain
metadata fields for the various asset types.

Press the Create pull request button to confirm the defaults.



5.3 Pipeline comparison

With the Pull Request created, colleagues could review the changes by exploring the details of
the Pull Request as per below.

Bitbucket allows configurations on Pull Request review so that the right notifications and
processes can be embedded based on the organization requirements.

To review the changes of the Pull Request, we will focus on comparing the changes for the
ExamplePipeline Pipeline. By using the Pull Asset Pipeline described in a previous section, we
can choose to copy the version of the Pipeline corresponding to the version on the master
branch. Note that this can be changed to any other branch to use as the reference of the
comparison. For target_proj, ExampleProject_dev has been configured to indicate that we want
a new project created for the reference asset.



When the Pipeline has finished, we now have a new SnapLogic project that holds our single
asset we want to compare to.

We can now open up our new Pipeline (that has the changes) and press the Compare Pipeline
icon.

Here we navigate to the new ExampleProject_review project and select the ExamplePipeline
(corresponding to master branch and CompanyGlobal_prod asset).



By selecting Different, we can see that we have added a new JSON Formatter Snap.

By selecting Similar, we can see that the Mapper has changed between the versions. Pressing
on the Mapper Snap brings up a detailed property comparison between the two files.



Obviously, we could also choose to explore the SecondPipeline in detail, as well as potential
changes in Accounts and Tasks, but that is out of the scope for this example.

5.4 Approving and merging Pull Request

As our colleague has now reviewed the Pipeline, they will Approve and potentially (depending
on process) Merge the Pull Request as per below.



In the above example, the Close source branch setting was enabled to have the generated
branch deleted.

When the changes have been merged into the master branch, the Bitbucket Pipelines feature
will pick up on the event thanks to our CI/CD configuration. Navigating to the Pipelines section
of the repository, we can see that a new Pipeline was just successfully executed.

This means that the PromotionRequest Pipelines was invoked by the Bitbucket Pipeline script
through the Triggered Task, and the assets have now been created and updated in the
production organization. This was described in details in a previous section.

Navigating to the CompanyGlobal_prod organization, we can now see that our ExamplePipeline
has been updated, while the SecondPipeline asset was created.




