
Automated Deployment of SnaLogic assets with GitHub

Automated Deployment (CICD) of SnapLogic assets with GitHub

Introduction 2
SnapLogic Git Integration 3

Git model 3
A) Asset deployment across environments - an example 3

New / Modified Assets in the Dev Environment 4
Prod Environment 4
Define branches in the GitHub repository 5
Commit Dev assets to GitHub 6
Pulling / Committing assets into the Prod Environment 10

B) Deployment Automation using a GitHub Actions Workflow 12
Actions workflow YAML sample 12

Table 1.0 - Workflow Actions 14
Workflow execution 14

Table 2.0 - Steps for subsequent / future asset deployment 16
Deployment flow (Dev->Test->Prod) 16

Deployment flow: Dev->Test->Prod 16

www.snaplogic.com Page 1 of 16

http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

Introduction

This guide is a reference document for the deployment of SnapLogic assets to a GitHub repository. It
also includes sample YAML code for a GitHub Actions workflow which can be used to automate the
deployment of assets across Environments (Dev -> Stg / Stg -> Prod, etc.)

This guide is targeted towards SnapLogic Environment Administrators (Org Administrators) and users
who are responsible for the deployment of SnapLogic assets / Release management operations.

Section B covers automated deployment with GitHub Actions, and Section A illustrates a manual
deployment flow using the Manager interface.

Author:

Ram Bysani
SnapLogic Enterprise Architecture team

www.snaplogic.com Page 2 of 16

http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

SnapLogic Git Integration
Git Integration allows you to track, update, and manage versions of SnapLogic assets using the
graphical interface or the public APIs. The following asset types can be tracked in a GitHub
repository:

Accounts
Files
Pipelines
Tasks

Git model

A)Asset deployment across environments - an example
The example in this document illustrates a sample deployment of SnapLogic assets from the Dev
environment (org) to the Prod environment (org). A similar methodology can be adopted to deploy
assets from Dev -> Stg -> Prod environments. The environments should be configured for Git
integration with GitHub. Please refer to the steps in the documentation.

Git Integration

Git operations

The assets in this example are tracked at a project space level, i.e. one Project Space in Dev is
associated with a single branch in the GitHub repository. A single GitHub repository is used to

www.snaplogic.com Page 3 of 16

https://docs.snaplogic.com/cicd/git-integration/git-integration-github.html
https://docs.snaplogic.com/cicd/git-integration/git-operations.html
http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

maintain the branches for Dev, Stg, Prod, etc. Repository branches can also be deleted and
re-created for specific deployment needs.

New / Modified Assets in the Dev Environment

Project Space: Dev_Integration_Space with the below project folders having SnapLogic assets.

Integration_Project_1, Integration_Project_2, share

Prod Environment
We have already defined an empty project space named Prod_GH_Integration in the Prod env. This
step can also be done by using the SnapLogic public API Project APIs.

www.snaplogic.com Page 4 of 16

https://docs.snaplogic.com/public-apis/apis-project.htm
http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

Define branches in the GitHub repository
Create individual branches in the GitHub repository for the Dev and Prod project space assets. You
can choose the main branch as the default branch while creating Dev_GH_Space. Choose the
Dev_GH_Space branch as the source when creating the Prod_GH_Space branch.

Each branch in the GitHub repository corresponds to a Project Space in SnapLogic.

e.g:

Dev_GH_Space

Prod_GH_Space

www.snaplogic.com Page 5 of 16

http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

Commit Dev assets to GitHub
Connect to the Dev (source) environment in the SnapLogic Manager interface, and navigate to the
project space named Dev_GH_Integration_Space. Right click and select Git Repository Checkout.
Choose the Git repository branch Dev_GH_Space.

www.snaplogic.com Page 6 of 16

http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

You can see that the Git status has changed to Tracked for all assets under the child projects. Note that
some assets appear with status Untracked as these were already existing in the main branch. These
assets would not be committed to the Git repository.

Notice the tracking message with the branch name and commit id next to the project space name:

Tracked with Git repository: byaniram/RB_Snaprepo/heads/Dev_GH_Space, commit: 9a22ac8

www.snaplogic.com Page 7 of 16

https://github.com/byaniram/RB_Snaprepo
https://github.com/byaniram/RB_Snaprepo/commit/03b909a8fee9b72a2594825a8cdd6aa70137b1a6
http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

Connect to the GitHub repository and verify the commit status for the branch Dev_GH_Space.

Create Pull Request in GitHub

At this step, you would need to create a Pull Request in GitHub. Choose Prod_GH_Space as the base
branch, and Dev_GH_Space as the compare branch, and create the Pull request. This action would
merge the assets contained in the Dev_GH_Space branch into the Prod_GH_Space branch.

www.snaplogic.com Page 8 of 16

http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

Connect to the GitHub repository and verify the commit status for the branch Prod_GH_Space. The
assets have now been committed to the Prod environment and are tracked in the GitHub repository under
the branch - Prod_GH_Space.

www.snaplogic.com Page 9 of 16

http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

It is also possible to merge and pull from additional branch(es) into a single Prod_GH_Space if you have a
need for it. You would need to repeat the Pull / Merge process as above with the base branch being
Prod_GH_Space, and the compare branch being one of Dev_GH_Space, Dev_GH_Space_1, or
Dev_GH_Space_2.

Pulling / Committing assets into the Prod Environment
Connect to the Prod (target) environment in the SnapLogic Manager interface, and navigate to the
project space named Prod_GH_Integration_Space. Right click and select Git Repository Checkout.
Choose the Git repository branch Prod_GH_Space.

Choose Git Pull to pull the assets into the Project space.

www.snaplogic.com Page 10 of 16

http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

The assets from the Dev_Integration_Space project space of the Dev environment are deployed to
the Prod_Integration_Space project space of the Prod environment.

Notice the tracking message with the branch name and commit id next to the project space name:

Tracked with Git repository: byaniram/RB_Snaprepo/heads/Prod_GH_Space, commit: ce0c368

For subsequent deployments of changed assets, you would first do a Commit to Git for the project
space in the SnapLogic Dev environment, followed by the above steps. Changed assets would be
visible with a Git status of ‘Tracked, Modified locally’ in the SnapLogic Manager.

www.snaplogic.com Page 11 of 16

https://github.com/byaniram/RB_Snaprepo
http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

B)Deployment Automation using a GitHub Actions Workflow

Actions workflow YAML sample

A GitHub Actions workflow can be used to automate the deployment of assets across SnapLogic
environments (such as Dev to Stg, Stg to Prod, etc.). A workflow is a configurable automated process
made up of one or more jobs. You must create a YAML file to define your workflow configuration.

Here’s a complete YAML file for the Dev -> Prod deployment example described in Section A above.
The complete YAML file is attached for your reference. Please create a new Workflow from the
Actions tab, and paste the contents of the file in the workflow editor and commit changes.

Actions workflow for automated deployment of SnapLogic assets

name: SnapLogic CICD Sample

on:

push:

branches:

- Dev_GH_Space

Uncomment the below line if you need to execute the workflow manually.

workflow_dispatch:

jobs:

pull_merge_branches:

runs-on: ubuntu-latest

steps:

- name: Checkout repository

uses: actions/checkout@v4

- name: Merge Dev to Prod

www.snaplogic.com Page 12 of 16

http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

uses: devmasx/merge-branch@master

with:

type: now

from_branch: Dev_GH_Space

target_branch: Prod_GH_Space

github_token: ${{ secrets.ACTIONS_TOKEN }}

- name: Checkout project assets to Prod project space

run: |

curl -s -X POST \

${{vars.SNAP_URL}}/api/1/rest/public/project/pull/${{vars.SNAP_ORG}}/${{vars.PROJECT_SPACE}} \

-H "Content-Type:application/json" -H "Authorization:Basic ${{secrets.BASE64_TOKEN}}" \

-d '{"use_theirs":"true"}'

Please refer to the GitHub documentation for information related to Workflow usage and syntax:

GitHub Workflows
Workflow syntax

The following table provides clarification on certain aspects of the sample workflow for better
understanding.

Section Comments

runs-on: ubuntu-latest runs-on defines the runner (type of machine) to use to
run the job. ubuntu-latest specifies a GitHub hosted
runner image.

GitHub hosted runners

uses: actions/checkout@v4 checkout is an action which is available in the GitHub
marketplace. This action checks out the repository for
use. v4 is the version number of the action.

www.snaplogic.com Page 13 of 16

https://docs.github.com/en/actions/using-workflows/about-workflows
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#choosing-github-hosted-runners
http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

https://github.com/marketplace/actions/checkout

uses: devmasx/merge-branch@master merge-branch is an action from the GitHub
marketplace. This action runs a Git merge operation.

https://github.com/marketplace/actions/merge-branch

It also requires you to define a personal access token
(classic) under Developer Settings -> Personal access
tokens. Select both the repo and workflow checkboxes.

curl -s -X POST \

${{vars.SNAP_URL}}/api/1/rest/public/
project/pull/${{vars.SNAP_ORG}}/${{va
rs.PROJECT_SPACE}} \

-H "Content-Type:application/json" -H
"Authorization:Basic
${{secrets.BASE64_TOKEN}}" \
-d '{"use_theirs":"true"}'

This is a CURL command that executes the SnapLogic
public API to pull the latest project files from Git.

See Pull the latest project files from Git

The referenced variables are defined on the GitHub
repository under Settings -> Secrets and variables ->
Actions. The vars context is used to reference those
variables. (e.g. SNAP_ORG, PROJECT_SPACE)

You can also define encrypted Secrets for sensitive
data and reference them using the secrets context as
in the example.
(e.g. BASE64_TOKEN has the base64 encoded string
for username and password)

Workflow Variables

Table 1.0 - Workflow Actions

Workflow execution
The above Actions workflow will be automatically executed whenever there is a “Push” / “Git Commit”
operation to the Dev_GH_Space branch. i.e. whenever a commit is done from the Dev SnapLogic
environment project space.

The workflow will execute the pull-merge operation to the Prod_GH_Space branch, and pull the latest
project assets into the Prod SnapLogic environment. The YAML file must be created under the
.github/workflows folder of the Dev_GH_Space branch in the GitHub repository.

www.snaplogic.com Page 14 of 16

https://github.com/marketplace/actions/merge-branch
https://docs.snaplogic.com/public-apis/post-project-pull-project-path.html
https://docs.github.com/en/actions/learn-github-actions/variables#defining-configuration-variables-for-multiple-workflows
http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

The workflow run status will be visible under the Actions tab.

Note:
If you wish to manually execute the pull-merge post code review, then you can uncomment the two
lines in the script to enable workflow_dispatch, and execute the Actions workflow manually from the
Actions tab on GitHub.

Uncomment the below line if you need to execute the workflow manually.

workflow_dispatch:

You can edit and modify the YAML file as per your requirements. Subsequent commits and
deployments from Dev->Prod can be automated similarly.

www.snaplogic.com Page 15 of 16

http://www.snaplogic.com

Automated Deployment of SnaLogic assets with GitHub

Comments Action

SnapLogic Dev environment Manager Interface

Asset -> Add to repository. Ensure status shows Tracked

Project Space -> Commit to Git

Developer commits new code or updates
assets in the Dev environment to the
GitHub repository

Create a new Pull Request on GitHub, and merge the newly
committed assets by choosing the Prod branch as the base,
and the Dev branch as the compare branch.

Create and merge Pull Request

SnapLogic Prod environment Manager Interface

Project Space -> Git Pull

Pull the updated assets into the Prod
environment

Table 2.0 - Steps for subsequent / future asset deployment

Deployment flow (Dev->Test->Prod)

Deployment flow: Dev->Test->Prod

Note: Future versions of this document will cover additional deployment scenarios. Please post your comments
on the article.

www.snaplogic.com Page 16 of 16

http://www.snaplogic.com

