
PIPELINE PERFORMANCE OPTIMIZATION

Pipeline Design and Performance Optimization Guide

Introduction 2
Why good Pipeline Design is important 3
Understanding Pipeline Behaviour 4
Pipeline Execution States 4
Pipeline Design Decision Flow 6
Snap Execution Model 7
Pipeline Data Buffering 7

Sample Pipeline illustration for threads and buffers 9
Memory Configuration thresholds 10

Hypothetical scenario 11
Modularization 11
Pipeline Reuse with Pipeline Execute 12
Additional Pipeline design recommendations 13

SLDB 13
Snaps 14
Pipelines 14

Optimization recommendations for common scenarios 15
Configuring Triggered and Ultra Tasks for Optimal Performance 17

Ultra Tasks 17
Definition and Characteristics 17
General Ultra Best Practices 17

Headless Ultra 17
Use Cases 17
Best Practices 17

Low Latency API Ultra 18
Use Cases 18
Best Practices 18

Triggered Tasks 19
Definition and Characteristics 19
Use Cases 19
Best Practices 19

www.snaplogic.com Page 1 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Introduction
This document serves as a comprehensive best practice guide for developing efficient and robust
Pipelines within the SnapLogic Platform.

It offers guidelines that aim to optimize performance, enhance maintainability, reusability, and provide
a basis for understanding common integration scenarios and how best to approach them. The best
practices encompass various aspects of Pipeline design, including Pipeline behavior, performance
optimization and governance guidelines.

By adhering to these best practices, SnapLogic developers can create high-quality Pipelines that
yield optimal results while promoting maintainability and reuse.

The content within this document is intended for the SnapLogic Developer Community or an
Architect, in addition to any individuals who may have an influence on the design, development or
deployment of Pipelines within the SnapLogic platform.

Authors: SnapLogic Enterprise Architecture team

www.snaplogic.com Page 2 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Why good Pipeline Design is important
The SnapLogic Pipeline serves as the foundation for orchestrating data across business systems,
both within and outside of an organization. One of its key benefits is its flexibility and the broad range
of "Snaps" that aim to reduce the complexity involved in performing specific technical operations. The
“SnapLogic Designer”, a graphical low-code environment for building an integration use case with
Snaps, provides a canvas enabling users with little technical knowledge to construct integration
Pipelines. As with any user-driven environment, users must exercise careful attention to ensure they
not only achieve their desired business goals but also adhere to the right approach that aligns with
industry and platform best practices. When dealing with a SnapLogic Pipeline, these best practices
may encompass various considerations:

● Is my Pipeline optimized to perform efficiently?
● Will the Pipeline scale effectively when there's an increase in data demand or volume?
● If another developer were to review the Pipeline, would they easily comprehend its functionality

and intended outcome?
● Does my Pipeline conform to my company's internal conventions and best practices?

Not considering these factors may cause undesirable consequences for the business and users
concerned. Relative to the considerations stated above, these consequences could be as follows:

● If data is not delivered to the target system, there may be financial consequences for the
business.

● The business may experience data loss or inconsistency when unexpected demand occurs.
● Development and project teams are impacted if they are unable to deliver projects in a timely

fashion.
● Lack of internal standardization limits a company's ability to govern usage across the whole

business, thus making them less agile.

Therefore, it is essential that users of the Platform consider best practice recommendations and also
contemplate how they can adopt and govern the process to ensure successful business outcomes.

www.snaplogic.com Page 3 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Understanding Pipeline Behaviour
To better understand how Pipelines can be built effectively within SnapLogic, it is essential to have an
understanding of the Pipeline’s internal characteristics and behaviors. This section aims to provide
foundational knowledge about the internal behavior of Pipelines, enabling you to develop a solid
understanding of how they operate and help influence better design decisions.

Pipeline Execution States
The execution of a SnapLogic Pipeline can be initiated either via a Triggered, Ultra or Scheduled task.
In each case, the Pipeline transitions through a number of different ‘states’ with each state reflecting a
distinct processing the lifecycle of the Pipeline, from invocation, preparation, execution to completion.
The following section of the document will look to highlight this process in more detail and explain
some of the internal behaviors.

The typical Pipeline execution flow is as follows:

1. Initialize Pipeline.
2. Send Metadata to Snaplex.
3. Prepare Pipeline, fetch & decrypt account credentials.
4. Connect to endpoint security.
5. Send execution metrics.
6. Pipeline completes, and resources are released.

The following section describes the different Pipeline state transitions & respective behavior in
sequential order.

State Purpose

NoUpdate A pre-preparing state. This indicates a request to invoke a Pipeline
has been received but the leader node or control plane is trying to
establish which Snaplex node it should run on. (This state is only
relevant if the Pipeline is executed on the leader node).

Preparing Indicates the retrieval of relevant asset metadata including
dependencies from the control plane relating to the invoked Pipeline.
This process also carries out pre-validation of snap configuration
alerting the user of any missing mandatory snap attributes.

Prepared Pipeline is prepared and is ready to be executed

www.snaplogic.com Page 4 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Executing Pipeline executes and processes data, connecting to any Snap
Endpoints using the specified protocols.

Completed Pipeline execution is complete and the teardown resulting in the
releasing of compute resources within the Snaplex Node. Final
Pipeline execution metrics and sent to the Control Plane.

Table 1.0 Pipeline state transitions

Pipeline execution flow

www.snaplogic.com Page 5 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Pipeline Design Decision Flow
The following decision tree can be used to establish the best Pipeline Design approach for a given
use case.

www.snaplogic.com Page 6 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Snap Execution Model
Snaps can be generally categorized into these types:

● Fully Streaming

Most Snaps follow a fully streaming model. i.e. Read one document from the Input view (or
from the source endpoint for Read Snaps), and write one document to the Output view or to
the target endpoint.

● Streaming with batching

Some Snaps are streaming with batching behavior. For example, the DB Insert Snap reads N
documents and then makes one call to the database (where N is the batch size set in the
database account).

● Aggregating

Aggregating type Snaps (e.g. Aggregate, Group By, Join, Sort, Unique etc.) read all input
documents before any output is written to the Output view. Aggregating Snaps can change the
Pipeline execution characteristics significantly as these Snaps must receive all upstream
documents before processing and sending the documents to the downstream Snaps.

Pipeline Data Buffering

Connected Snaps with a Pipeline communicate with one another using Input and Output views. An
Input view accepts data being passed from an upstream snap, it operates on the data and then
passes the data to its Output view. Each view implements a separate in-memory ring buffer at
runtime. Given the following example, the Pipeline will have three separate ring buffers. These are
represented by the circular connections between each snap (diamond shaped connections for binary
Snaps).

● The size of each ring buffer can be configured by setting the below feature flags on the org.
The default values are 1024 and 128 for DOCUMENT and BINARY data formats respectively.

www.snaplogic.com Page 7 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

com.snaplogic.cc.jstream.view.publisher.AbstractPublisher.DOC_RING_BUFFER_SIZE=
1024

com.snaplogic.cc.jstream.view.publisher.AbstractPublisher.BINARY_RING_BUFFER_SIZE=
128

The values must be set as powers of two.

● The source Snap reads data from the endpoint and writes to the Output view.

● If the buffer is full (i.e. if the Consumer Snap is slow), then the Producer Snap will block on the
write operation for the 1025th document.

● Pipeline branches execute independently. However in some cases, the data flow of a branch in
a Pipeline can get blocked until another branch completes streaming the document.

Example: A Join Snap might hang if its upstream Snaps (e.g. Copy, Router, Aggregator, or
similar) has a blocked branch.
This can be alleviated by setting Sorted streams to Unsorted in the Join Snap to buffer all
documents in input views internally.

● The actual threads that a Pipeline consumes can be higher than the number of Snaps in a
Pipeline.

● Some Snaps such as Pipeline Execute, Bulk loaders, and Snaps performing input/output, can
use a higher number of threads compared to other Snaps.

www.snaplogic.com Page 8 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Sample Pipeline illustration for threads and buffers
The following example Pipeline demonstrates the practical example of how the usage and
composition of Snaps within a Pipeline change the characteristics of how the Pipeline will operate
once it is executed.

● Six threads are initialized at Pipeline startup. There are a total of seven ring buffers. The Copy
Snap has two buffers, all other Snaps have one output buffer each.

● There are two segments that run in parallel and are isolated (other than the fact that they run
on the same node, sharing CPU/memory/IO bandwidth).

● The first segment has two branches. Performance of one branch can impact the other. For
example, if the SOAP branch is slow, then the Copy Snap’s buffer for the SOAP branch will get
full. At this point, the Copy Snap will stop processing documents until there is space available
in the SOAP branch’s buffer.

● Placing an aggregating Snap like the Sort Snap in the slow branch changes the performance
characteristics significantly as the Snap must receive all upstream documents before
processing and sending the documents to the downstream Snaps.

www.snaplogic.com Page 9 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Memory Configuration thresholds

Property /
Threshold

Where configured Default
value

Comments

Maximum
memory %

Node properties tab of the Snaplex 85 (%) Threshold at which no more
Pipelines will be assigned to a
node

Pipeline
termination
threshold

Internal

(Can be configured by setting the
feature flag at the org level
com.snaplogic.cc.snap.common.Sn
apThreadStatsPoller.MEMORY_HIGH
_WATERMARK_PERCENT)

95 (%) Threshold at which the active
Pipeline management feature
kicks in and terminates Pipelines
when the node memory
consumption exceeds the
threshold.

Ideal range: 75-99

Pipeline restart
delay interval

Internal

(Can be configured by setting the
feature flag at the org level

com.snaplogic.cc.snap.common.Sn
apThreadStatsPoller.PIPELINE_REST

ART_DELAY_SECS)

30
(seconds)

One Pipeline is terminated every
30 seconds until the node memory
goes below the threshold (i.e. goes
below 95%)

Range: 75-99

Table 2.0 Snaplex node memory configurations

The above thresholds can be optimized to minimize Pipeline terminations due Out-of-Memory
exceptions. Note that the memory thresholds are based on the Physical memory on the node, and not
the Virtual / Swap memory.

Additional Reference: Optimizations for Swap Memory

www.snaplogic.com Page 10 of 19

https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/1439068/Configuration+Options#Performance-Implications-for-Using-Swap
http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Hypothetical scenario

Add 16 GB swap memory to a Snaplex node with 8 GB physical memory.

Property Comments

Swap Space on the
server

Add 16 GB of swap / virtual memory to the node.

Total Memory Total Memory is now = 24 GB (8 GB Physical plus 16 GB Virtual)

Maximum Heap Size Set to 90% (of 24 GB) = 22 GB

Maximum Memory Set to 31% rounded (of 22 GB) = 7 GB

Table 3.0 Snaplex node memory configurations

By updating the memory configurations as in the above example, the JCC utilizes 7 GB of the
available 8 GB memory. Beyond that value, the load balancer would queue up additional Pipelines or
distribute them across other nodes.

● Use the default configurations for normal workloads, and use Swap-enabled configuration for
dynamic workloads.

● When your workload exceeds the available physical memory and the swap is utilized, the JCC
can become slower due to additional IO overhead caused by swapping. Hence, configure a
higher timeout for jcc.status_timeout_seconds and jcc.jcc_poll_timeout_seconds for the
JCC health checks.

● We recommend that you limit to 16 GB the maximum swap to be used by the JCC. Using a larger
swap configuration causes performance degradation during the JRE garbage collection
operations.

Modularization
Modularization can be implemented in SnapLogic Pipelines by making use of the Pipeline Execute
Snap. This approach enables you to:

● Structure complex Pipelines into smaller segments through child Pipelines.
● Initiate parallel data processing using the Pooling option.
● Reuse child Pipelines.

www.snaplogic.com Page 11 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

● Orchestrate data processing across nodes, within the Snaplex or across Snaplexes.
● Distribute global values through Pipeline parameters across a set of child Pipeline Snaps.

Modularization best practices:

● Modularize by business or technical functions.
● Modularize based on functionality and avoid deep nesting or nesting without a purpose.
● Modularize to simplify overly-complex Pipelines and reduce in-page references.
● Use the Pipeline Execute Snap over other Snaps such as Task Execute, ForEach, Auto-router

(i.e. Router Snap with no routes defined with expressions), or Nested Pipelines.

Pipeline Reuse with Pipeline Execute
Detailed documentation with examples can be found in the SnapLogic documentation for Pipeline
Execute.

Use Pipeline Execute when:

● The child Pipeline is CPU/memory heavy and parallel processing can help increase
throughput.

Avoid when:
• The child Pipeline is lightweight where the distribution overhead can be higher than the benefit.

Additional recommendations and best practices for the Pipeline Execute Snap:

• Use Reuse mode to reduce child runtime creation overhead. Reuse mode allows each child
Pipeline instance to process multiple input documents. Note that the child Pipeline must be a
streaming Pipeline for reuse mode.

• Use the batching (Batch size) option to batch data (avoid grouping records in parent).

• Use the Pool size (parallelism) option to add concurrency.

• If the document count is low then use the Pipeline Execute Snap for structuring Pipelines else
embed the child segment within the Parent Pipeline instead of using Pipeline Execute.

• Set the Pool Size to > 1 to enable concurrent executions up to the specified pool size.

• Set Batch Size = N (where N > 1). This sends N number of documents to the child Pipeline

www.snaplogic.com Page 12 of 19

https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/1438684/Pipeline+Execute
https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/1438684/Pipeline+Execute
http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

input view.

• Use Execute On to specify the target Snaplex for the child Pipeline. Execute On can be set to
one of the below values:

- LOCAL_NODE. Runs the child Pipeline on the same node as the parent Pipeline. This
is recommended when the child Pipeline is being used for Pipeline structuring and
reuse rather than Pipeline workload distribution. This option is used for most child
Pipeline executions.

- LOCAL_SNAPLEX. Runs the child Pipeline on one of the available nodes in the same
Snaplex as the parent Pipeline. The least utilized node principle is applied to determine
the node where the child Pipeline will run.This has dependency on the network, and
must be used when workload distribution within the Snaplex is required.

- SNAPLEX_WITH_PATH. Runs the child Pipeline on a user-specified Snaplex. This
allows high workload distribution, and must be used when the child Pipeline has to run
on a different Snaplex for endpoint connectivity restrictions or for effective workload
distribution. This option also allows you to use Pipeline parameters to define relative
paths for the Snaplex name.

Additional Pipeline design recommendations

This section lists some recommendations to improve Pipeline efficiency.

SLDB

Note:

SLDB should not be used as a file source or as a destination in any SnapLogic orgs (Prod / Non-Prod).
You can use your own Cloud storage provider for this purpose. You may encounter issues such as file
corruption, pipeline failures, inconsistent behavior, SLA violations, and platform latency if using SLDB
instead of a separate Cloud storage for the file store.

www.snaplogic.com Page 13 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

This applies to all File Reader / Writer Snaps and the SnapLogic API.

1. File Read from an SLDB File source.
2. File Write operations to SLDB as a destination.

Use your own Cloud storage instead of SLDB for the following (or any other) File Read / Write
use-cases:

- Store last run timestamps or other tracking information for processed documents.
- Store log files.
- Store other sensitive information.
- Read files from SLDB store.

Avoid using the Record Replay Snap in Production environments as the recorded documents are
stored in an SLDB path making them visible to users with Read access.

Snaps

● Enable Pagination for Snaps where supported (e.g. REST Snaps, HTTP Client, GraphQL,
Marketo, etc.). There should also always be a Pagination interval to ensure that too many
requests are not made in a short time.

● Use the Group By N Snap where there is a requirement to limit request sizes. E.g. Marketo
API request.

● The Group By Fields Snap creates a new group every time a record with a different Group
Field value is received. Place a Sort Snap before Group By Fields to avoid multiple sets of
documents with the same group value.

● XML Parser Snap with a Splitter expression reduces memory overhead when reading large
XML files.

● Use an Email Sender Snap with a Group By Snap to minimize the number of emails that get
sent out.

www.snaplogic.com Page 14 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Pipelines

● Batch Size (only available if the Reuse executions option is not enabled) is used to control the
amount of records that are passed into a child Pipeline. Setting this value to 1 will pass a
single record for each instance of the child Pipeline. Avoid using this approach when
processing large volumes of documents.

● Do not schedule a chain reaction. When possible, separate a large Pipeline into smaller pieces
and schedule the individual Pipelines independently. Distribute the execution of resources
across the timeline and avoid a chain reaction.

● Integration API limits must not exceed across all integrations running at the same time. Group
By Snaps or Pipeline Execute can be used to achieve this.

Optimization recommendations for common scenarios

Scenario Recommendation Feature(s)

Multiple Pipelines with similar
structure

Use parameterization with
Pipeline Execute to reuse
Pipelines

Pipeline Execute

Pipeline parameters

Bulk Loading to target datasource Use Bulk Load Snaps where
available
(e.g. Azure SQL - Bulk Load,
Snowflake - Bulk Load)

Bulk Loading

Mapper snap contains a large
amount of mappings where the
source & target field names are
consistent

Enable “Pass through” setting on
the Mapper.

Mapper - Pass Through

Processing large data loads Perform target load operation
within a Child Pipeline using the
“Pipeline Execute” snap with
“Execute On” set to
“LOCAL_SNAPLEX”.

Pipeline Execute

www.snaplogic.com Page 15 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Performing complex
transformations and/or
JOIN/SORT operations across
multiple tables

Perform transformations &
operations within SQL query

SQL Query Snaps

High Throughput Message Queue
to Database ingestion

Batch polling and ingestion of
messages by:

● Specifying matching values
for Max Poll Record
(Consumer Snap) with
Batch Size (Database
Account Setting).

● Performing database
ingestion within a child
Pipeline with Reuse
Enabled on the Pipeline
Execute Snap.

Consumer Snaps

Database Load Snaps

Table 4.0 Optimization recommendations

www.snaplogic.com Page 16 of 19

http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

Configuring Triggered and Ultra Tasks for Optimal Performance

Ultra Tasks

Definition and Characteristics
An Ultra Task is a type of task which can be used to execute Ultra Pipelines. Ultra Tasks are
well-suited for scenarios where there is a need to process large volumes of data with low latency,
high throughput, and persistent execution.
While the performance of an Ultra Pipeline largely depends on the response times of the external
applications to which the Pipeline connects to, there are a number of best practice recommendations
that can be followed to ensure optimal performance and availability.

General Ultra Best Practices
● Before building an Ultra Pipeline, consult the “Snap Support for Ultra Pipelines” documentation

to understand if the desired Snaps are supported.
● For optimal Ultra performance, deploy a dedicated Snaplex to support Ultra workloads.

There are two modes of Ultra Tasks - Headless Ultra and Low Latency Ultra API with each mode
being characterized by the design of the Pipeline which is invoked by the Ultra Task. The modes are
described in more detail below.

Headless Ultra
A Headless Ultra Pipeline is an Ultra Pipeline which
does not require a Feedmaster, and where the data
source is a Listener or Consumer type construct, for
example Kafka Consumer, File Poller, SAP IDOC
Listener (For a detailed list of supported Snaps, please
click here).

The Headless Ultra Pipeline executes continuously
and polls the data source according to the frequency
configured within the Snap passing documents from
the source to downstream Snaps.

Use Cases
● Processing real-time data streams such as

message queues.
● High volume message or file processing patterns with concurrency.
● Publish/Subscribe messaging patterns.

Best Practices
● Deploy multiple instances of the Ultra Task for High Availability.

www.snaplogic.com Page 17 of 19

https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/809009235/Snap+Support+for+Ultra+Pipelines
https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/731218201/Creating+a+Dedicated+Snaplex+for+Ultra+Pipelines
https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/731218197/Deployment+Architecture+for+Ultra+Pipeline+Tasks
http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

● Decompose complex Pipelines into independent Pipeline using a Publish-Subscribe pattern.
● Lower the dependency on the Control Plane by avoiding the use of expressions to declare

queue names, account paths etc.
● Set the ‘Maximum Failures’ Ultra Task configuration threshold according to the desired

tolerance for failure.
● For long running Ultra Pipelines, set a higher ‘Max In-Flight’ option to a higher value within the

Ultra Task configuration.
● When slow performing endpoints are observed within the Pipeline, use the Pipeline Execute

Snap with Reuse mode enabled and the Pool Size field set to > 1 to create concurrency across
multiple requests to the endpoint.

Additional reference: Ultra Tasks

Low Latency API Ultra
Low Latency API Ultra is a high-performance
API execution mode designed for real-time,
low-latency data integration and processing.
The Pipeline invoked by the Ultra Task is
characterized by having an open input view for
the first Snap used in the Pipeline (typically a
HTTP Router or Mapper Snap). Requests made
to the API are brokered through a ‘Feedmaster
Node’, guaranteeing at least once message
delivery.

Use Cases
● High frequency & high throughput

request-response use cases.
● Sub-second response times requirement.

Best Practices
● Deploy multiple Feedmasters for High

Availability.
● Deploy multiple instances of the Ultra

Task for High Availability running within
the same Snaplex.

● Leverage the ‘Alias’ setting within the Ultra Task configuration to support multi Snaplex High
Availablity.

● To support unpredictable high volume API workloads, leverage the ‘Autoscale based on
Feedmaster queue’ instance setting in the Ultra task configuration.

● When slow performing endpoints are observed within the Pipeline, use the Pipeline Execute
Snap with the Reuse mode enabled and the Pool Size field set to > 1 to create concurrency
across multiple requests to the endpoint.

www.snaplogic.com Page 18 of 19

https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/808976495/Creating+Ultra+Tasks
https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/731218197/Deployment+Architecture+for+Ultra+Pipeline+Tasks#DeploymentArchitectureforUltraPipelineTasks-DisasterRecoveryConfiguration%E2%80%94FourFeedMastersandTwoLoadBalancers
https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/731218197/Deployment+Architecture+for+Ultra+Pipeline+Tasks#DeploymentArchitectureforUltraPipelineTasks-DisasterRecoveryConfiguration%E2%80%94FourFeedMastersandTwoLoadBalancers
https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/808976495/Creating+Ultra+Tasks
http://www.snaplogic.com

PIPELINE PERFORMANCE OPTIMIZATION

● Use the HTTP Router Snap to handle supported & unsupported HTTP methods implemented
by the Pipeline.

● Handle errors that may occur during the execution of the Pipeline and return the appropriate
HTTP status code within the API response. This can be done either by using the Mapper,
JSON Formatter or the XML Formatter Snap.

● Reference request query parameters using the $query object.
● Set the ‘Maximum Failures’ Ultra Task configuration setting according to the desired tolerance

for failure.
● For long running Ultra Pipelines, set a higher ‘Max In-Flight’ setting within the Ultra Task

configuration.

Triggered Tasks

Definition and Characteristics
Triggered Tasks offer the method of invoking a Pipeline using an API endpoint when the consumption
pattern of the API is infrequent and/or does not require low latency response times.

Use Cases
● When a batch operation is required within the Pipeline, e.g. Join, Group By, Sort etc.
● Integrations that need to be initiated on-demand.
● Non-real time data ingestion.
● File ingestion and processing.
● Bulk data export APIs.

Best Practices
● Avoid deep nesting of large child Pipelines.
● Use Snaplex URL to execute Triggered Tasks for reduced latency response times.
● Handle errors that may occur during the execution of the Pipeline and return the appropriate

HTTP status code within the API response. This can be done either by using the Mapper,
JSON Formatter or the XML Formatter Snap.

● Use the HTTP Router snap to handle supported & unsupported HTTP methods implemented
by the Pipeline.

● Parallelise large data loads using the “Pipeline Execute” Snap with Pool Size > 1

www.snaplogic.com Page 19 of 19

http://www.snaplogic.com

