Below is a step by step guide, which can help build Snaplogic pipeline for JWT token generation and usage :
JWT Token Generation :
Snaplogic comes with an inbuilt snap called as JWT Generate which helps to generate a JSON Web Token. Inputs needed for these are:
Header: Which specifies the algorithm to be used
 Sample Json structure:
 header = {
typ: "JWT",
 			alg: "RS256",
};

Claims: Which specifies the connectivity details
	Sample Json structure:
 claims = {
 	aud: "https://login.XXX.com",
 	scope: "urn:portal:app:XXXX",
 	iss: "urn:portal:acct:XXXX"
};

Signature: Which is created using a Keystore that has an encoded private, private key combination.
 Private(.pem), Public key(.pem), Keystore are generated using below open SSL commands:
Step 1: First generate private key and cert
openssl req -x509 -newkey rsa:2048 -keyout private.pem -out cert.pem –nodes

Step 2: Convert private key and cert in P12 format
openssl pkcs12 -export -inkey private.pem -in cert.pem -out keyStore.p12

Step 3: Extract public key from private key
openssl rsa -in private.pem -pubout > public.pub

If we have these information handy, then let’s get started to map these into Snaplogic snaps as below:
Step1: Take a mapper snap and define all the parameters for building the Claims part as below:
[image:]
Step 2: Build the Claims entity as below:
{ aud: [$aud] , scope: $scope, iss: $iss}
[image:]

Step 3: Give details in JWT Generate Snap as below:
 [image:]

Step 4: Configure the JWT account:
Under the account Tab click Add account :
[image:]

Create the account by giving below details:
[image:]
Once account is created, click validate button and validate the account.

Step 5: Bravo! Once these configurations are done, you would have the JWT token which can then be extracted using a mapper as shown below:
[image:]

The pipeline till now would look something like this:
[image:]
Once the JWT token is generated, the actual OAuth access token can be generated by making rest call to the APIs exposed as below:
[bookmark: _GoBack][image:]
[image:]
An OAuth access token would then be generated.

Moving to the 2nd challenge, we now need to generate a dynamic Json structure. This can be achieved using JSON Generator Snap as shown below:
[image:]

Click the Edit JSON and provide the code, in Format Code Section, to build the Json dynamically based on the input data elements:
A code snippet would look something like this:
[image:]

The output of Json generator would look like :
[image:]
Point to note: The file to be uploaded using rest post, is a .json file, but here the output of JSON generator is an array. We can either handle this by having a mapper after the JSON Generator Snap and converting the array object to JSON, or by using Formatter Snap, and enabling the option “Json Lines” as below: [image:]

Once our connection, file is ready, we can move to our challenge 3, to transfer this file to a rest API using REST POST Snap as below:
1. We had to do the file transfer not as a body content, but as a Json file upload. To achieve this, we wrote the output from JSON generator to SLDB first using JSON Formatter, File Writer Snap first, then took the file name using a mapper and passed it to Rest POST snap and read back the file from SLDB for transfer. The pipeline would look like below:
[image:]

The output of mapper after File Writer snap would be file name, which can thereafter be used as a parameter to read from SLDB in the REST post snap.
[image:]
The Rest post snap for file transfer would look like below:
Note: We can use Single file upload/ Multiple File upload option in rest post based on the number of files we want to upload to Rest URL. To upload multiple files, specify similar details under “Form Upload”. Here I have only 1 file to upload so I am using the Single file upload option as below:
[image:]

[image:]

Note: Once the file transfer is complete, for security reason it is advisable to remove the file stored in SLDB. For this a File Delete Snap can be used as below:
[image:]

The overall pipeline looks like:
[image:]

Thanks for reading on, have a nice time exploring!!
BUSINESS DOCUMENT This document is intended for business use and should be distributed to intended recipients only.

image4.png
']WTGenerate ? \‘

Settings Account Views Info

Account Reference*

E] JWT_key_account

image5.png
' Edit Account ?

Settings Info

Label*

{ JWT_key_account Give account name

JWT Issuer* Give "iss" details from

{ "urn:pros:portal:acct: Claims Json here o
Token TTL* Give token validity duration

| 3600 here

Key Store* Provide the keystore generated from Step2 of

E] {keySto re.p12 Signature creation here. Es

KeyStore password*

) Give the password used for keystore generation here
{ Value is encrypted

Key Alias*
[1 []

m ‘ Validate ‘ ‘ Cancel

image6.png
Input Schema Mapping table* m 4 — Target Schema

Select Al Deselect All Expression* Target path Select Al Deselect All
Als (B saccess_token v | $jwt_token ®— | All $
[access_token string == jwt_token string

[— (O expires_in integer
©— O original object
— [token_type string

image7.png

image8.png
(1 ResT Post ?

Settings Account Views Info

(2]
=]

Label*
| REST Post

Service URL* . §
@) "veeos://1ogin /api/login/oauth2/token” Oauth token generation APT Url -

HTTP Entity Specify the sections under the body of postman under HTTP Entity, grant_type, assertion be be concatenated and URI encoded

| "grant_type=" + encodeURIComponent ("urn:ietf:params:oauth:grant-type:jwt-bearer") + "gassertion=" + encodeURIComponent ($jwt_token) w
Batch size

I

[[] Show all headers
single file upload: File

] EE

single file upload: File key

[=]| fite

single file upload: Filename to be used

Gl

Upload transfer request type

I Chunked transfer encoding v
Upload body type
I Multipart form-data v

image9.png
(| REST Post

Settings Account Views Info
single file upload: Multipart Content-Type

Form Upload

Trust all certificates

Follow redirects

Query parameters Pass the details under the Header section in a postmen in HTTP header entity as below

HTTP header
Key Value
[=]] Content-Type B)| "application/x—wwu-form-urlencoded”

Response entity type
| DEFAULT

«

Read timeout

| 900

Connection timeout

| 30

image10.png
']SON Generator ? r_l

Settings Views Info

Label*
{ JSON Generator

) Process array
(7] Pass through

Support Type Extensions
Snap Execution
{ Validate & Execute

“

image11.png
Edit JSON

Format Code | Export |

1 [set($operator

2 #set($colDef = [{" : "commoditygroup”, “"type":"STRING"}, {"var”: "servicegroup”, "type":"STRING"}])
3

4 #set($rows=[])

5 #foreach($commodity in $commodities)

6 #set($cmdtName = $commodity.COMMODITY_CODE + "_commoditygroup™)

7 #set($cmdt = $rows.add([{"values”: [$cmdtName]}, {"values™: [“ServiceGroupDummy servicegroup”]1}1))
g #end

9

10 {operator: $operator,

11 columnDef : $colDef,

12 rows: $rows

13 }

14

image12.png
JSON Generator output0

Preview Type Indent Level Expand Level
[Json 2 |2 iR B

vi
vy
"operator': "EQ",
¥ "columnDef": [
vy
"va

: "commoditygroup”,
"type": "STRING"

3
> {'var": “servicegroup", "type": "STRING'}

image13.png
- JSON Formatter1

Settings Views Info

Label*
‘ JSON Formatter1

Schema

B

(]

Binary header properties

Content

[[J Ignore empty stream
[[] Format each document
% JSON lines

e

image14.png

image15.png
Preview Type Indent Level Expand Level
[Json 2 |2 s+ 2
v
v
"filename": "AssociatedServiceGroups2.json"

image16.png
(71 REST Post1 ?

Settings Account Views Info

Label*
| REST Post1

Service URL* URL for uploading file

| "https:// ‘api” +

HTTP Entity

)

Batch size

I

Show all headers

Single file upload: File Filename as a parametre read from mapper,

32 which s saved into SLDB
$filename

Single file upload: File key Key used in the body part for file trasnfer
[E] I importFile

single file upload: Filename to be used Filename to be used for file trasnfer

E] I AssociatedServiceGroups.json

image17.png
Upload transfer request type
I Chunked transfer encoding

Upload body type
upload type
I Multipart form-data P op

«

«

single file upload: Multipart Content-Type

I application/json Content-Type P

Form Upload
Trust all certificates

Follow redirects
Header parameters which use access_token and a session +

Query parameters id generated previosly
HTTP header o
Key Value

[E]I X-quotex-sessionld I $sessionIld v—
[E]l X-quotex-environment l "dev" v—
[E]I Authorization I Saccess_token v—

image18.png
(File Delete

Settings Account Views
Label*

{ File Delete

File*

B soriginal.filename

File delete action
| IGNORE if file not found

[] validate deletion
Number of retries

Gllz

Retry interval (seconds)
Bl
Advanced properties

Snap Execution
{ Execute only

Info

Filename from the mapper output as
mentioned before, saved in SLDB

v

“

o

image19.png
— o

image1.png
Transformations*
Mapping root

s [
Input Schema Mapping table* 4+ = TargetSchema
Select Al Deselect All Expression* Target path Select Al Deselect All
l Al (B hetes:// v | saud »— | All
No schema available . I "arn: sortal:app:706dvw I $scope »_ ——(J aud string
[iss string
"urn: portaliacct:1f2w | $iss .

“— [scope string

image2.png
Transformations*
Mapping root

Is
Input Schema Mapping table* m + — TargetSchema
Select Al Deselect All Expression* Target path Select All Deselect /
Als B¢ aud: [saud] . scdv | sclaims o |
——[J aud string T—0O claims1 string
——iss string
([scope string

image3.png
']WTGenerate ? @ ®

Settings Account Views Info

Label*

[%
Audience put the AUD value from
{ "https://login. .com”" JSON here v
Subject

Token ID

Gl

Custom Metadata

{ $claimsl Put the Claims part here v
Algorithm*
{ RS256 This defines the header g

Snap Execution
{ Validate & Execute

«

