
Creating a SOAP Service using an Ultra Pipeline
OVERVIEW

Recently, I implemented a SOAP service within SnapLogic which works like this:
http://www.dneonline.com/calculator.asmx

It's a SOAP Service which will Add, Divide, Multiply and Subtract any two numbers.

INITIAL APPROACH - CAPTURE A SOAP REQUEST

The first thing I did was to create an Ultra pipeline to record incoming requests.
This pipeline eventually became the SOAP Service, but I needed to verify the incoming headers since
they contain one we care about -- SOAPAction -- which specifies which action is being called.

- Binary to Document (Setting: None)
- JSON Formatter (remember to select Format Each Document)
- File Writer to write out the request to a JSON file (remember to add the output view)

I enabled the above pipeline and noted down its URL and Authentication info.

Next, I grabbed and saved the WSDL file:
http://www.dneonline.com/calculator.asmx?wsdl

Before using it, I had to edit the URI's of the SOAP Ports (at the bottom of the file) to point to the Ultra
task's URL, since it originally pointed to URI's at www.dneonline.com.

<wsdl:service name="Calculator">
 <wsdl:port name="CalculatorSoap" binding="tns:CalculatorSoap">
 <soap:address location="https://prodxl-

jcc236.fullsail.snaplogic.com:8084/api/1/rest/feed-

master/queue/<client>/projects/UC5%20-%20API%20Calls/xml-ultra-task" />
 </wsdl:port>

https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-02-22 at 9.21.27 PM.png?attredirects=0
https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-02-22 at 9.31.03 PM.png?attredirects=0

 <wsdl:port name="CalculatorSoap12" binding="tns:CalculatorSoap12">
 <soap12:address location="https://prodxl-

jcc236.fullsail.snaplogic.com:8084/api/1/rest/feed-

master/queue/<client>/projects/UC5%20-%20API%20Calls/xml-ultra-task" />
 </wsdl:port>
 </wsdl:service>

Next, I created another pipeline to use for calling the SOAP Ultra. I added a SOAP snap, uploaded the
modified WSDL, and added the Authentication header from the Ultra task. Then I could select the service
name, endpoint and operation in the normal fashion.

After clicking on the "Customize Envelope" button, I ended up with the following SOAP envelope, with two
parameters, intA and intB.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns0="http://tempuri.org/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ns0:Subtract>
 <ns0:intA>$intA</ns0:intA>
 <ns0:intB>$intB</ns0:intB>
 </ns0:Subtract>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Next, I added a mapper in front of the SOAP Execute snap, removed its input view, and mapped values
to intA and intB. The SOAP Execute will fail at this point because we aren't returning a valid SOAP
response yet. At this point, all we care about is that the Ultra pipeline we're calling is recording what the
SOAP Execute is sending to it. The message received by the Ultra pipeline ended up looking like the
following:

{
 "task_name": "<client>/projects/UC5 - API Calls/xml-ultra-task",
 "content-length": "321",
 "soapaction": "\"http://tempuri.org/Multiply\"",
 "method": "POST",
 "query": {},

https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-02-22 at 9.40.28 PM.png?attredirects=0

 "message_id": "cf108605e2e75edee3cda74958d0aef193823e3b-27953@prodxl-

jcc236.fullsail.snaplogic.com",
 "uri": "https://prodxl-jcc236.fullsail.snaplogic.com:8084/api/1/rest/feed-

master/queue/<client>/projects/UC5%20-%20API%20Calls/xml-ultra-task",
 "content": "<soap:Envelope xmlns:ns1=\"http://tempuri.org/\"

xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"><SOAP-ENV:Header

xmlns:SOAP-

ENV=\"http://schemas.xmlsoap.org/soap/envelope/\"/><soap:Body><ns1:Multiply><

ns1:intA>123\n </ns1:intA><ns1:intB>456\n </ns1:intB></

ns1:Multiply></soap:Body></soap:Envelope>",
 "accept": "*/*",
 "client_port": 53800,
 "path_info": "",
 "host": "prodxl-jcc236.fullsail.snaplogic.com:8084",
 "server_ip": "10.153.235.168",
 "content-type": "text/xml; charset=UTF-8",
 "client_ip": "10.71.177.96",
 "server_port": 8084,
 "user-agent": "Apache CXF 2.7.16"
}

IMPLEMENTATION

Within the payload above, we care about two things within this captured request:

 "soapaction", which is a header being sent by the SOAP Execute snap

 "content", which is an XML string of the SOAP message being sent

So next, I built out the pipeline in place of the original Ultra depicted/described above.

Now let's step through each of the snaps and discuss what each does & why:

1) Binary Router, based on content of "soapaction" -- Normally SOAP clients add a header named
"SOAPAction", but note that Ultra converts the header's key name to lowercase. I added an "Other" route
at the bottom because Ultra pipelines need to return "something" when called, no matter what, or the
caller can hang forever/for a long time if nothing gets returned. This extra route ensures that sometime
will get returned if the value of the SOAPAction header isn't handled.

2) XSLT to remove namespaces from XML elements. This is a bonus step, but a very good one to
consider. Downstream, if you have logic that looks for the two numbers being operated upon, they will be
named something like "ns1:intA" and "ns1:intB". Everything element will have a namespace, and we
don't want our downstream mappers to be dependent on any particular/hardcoded namespace. For
instance, when calling the pipeline via SOAPUI, you'll see the namespaces "soapenv" and "tem". To get
the data, you'd have to use something like:
$['soapenv:Envelope'].['soapenv:Body'].['tem:Add'].['tem:intA']

https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-03-14 at 11.21.14 PM.png?attredirects=0
https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-03-14 at 11.23.09 PM.png?attredirects=0

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:tem="http://tempuri.org/">
 <soapenv:Header/>
 <soapenv:Body>
 <tem:Add>
 <tem:intA>123</tem:intA>
 <tem:intB>123</tem:intB>
 </tem:Add>
 </soapenv:Body>
</soapenv:Envelope>

vs with SnapLogic's SOAP Execute, you'll see namespaces "SOAP-ENV" and "ns0". To get the data,
you'd have to use something like: $['SOAP-ENV:Envelope'].['SOAP-ENV:Body'].['ns0:Subtract'].['ns0:intA']

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns0="http://tempuri.org/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ns0:Subtract>
 <ns0:intA>$intA</ns0:intA>
 <ns0:intB>$intB</ns0:intB>
 </ns0:Subtract>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If we leave namespaces intact, building mappings against a particular namespace can mean that your
pipeline will work for one SOAP client, but may fail against another.

The following XSLT can be applied to the XML to remove the namespaces.

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="*">
 <xsl:element name="{local-name()}">
 <xsl:apply-templates select="node()|@*" />
 </xsl:element>
 </xsl:template>

 <xsl:template match="@*">
 <xsl:attribute name="{local-name()}">
 <xsl:apply-templates select="node()|@*" />
 </xsl:attribute>
 </xsl:template>

</xsl:stylesheet>

By stripping off the namespaces, we end up with something like this:
 {
 "Envelope": {
 "Header": {
 "SOAP-ENV": "http://schemas.xmlsoap.org/soap/envelope/"
 },
 "Body": {
 "Multiply": {

 "intA": "123",
 "intB": "456"
 }
 }
 }
 }

which allows us to grab up values via $Envelope.Body.Multiply.intA and $Envelope.Body.Multiply.intB

3) XML Parser - standard settings

4) Mappers to do the arithmetic and map the result to a field

For example, here's the mapping logic for the Add route. You can see how removing the namespaces
not only simplifies our task, but also makes for a much more robust pipeline!

parseInt($Envelope.Body.Add.intA) + parseInt($Envelope.Body.Add.intB) --> $answer

5) XML Generator to generate what's going back to the SOAP client. Each of these will be different
because of the unique elements like AddResponse and AddResult, SubtractResponse and
SubtractResult, etc.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <AddResponse
 xmlns="http://tempuri.org/">
 <AddResult>$answer</AddResult>
 </AddResponse>
 </soap:Body>
</soap:Envelope>

6) Union - Join the flows together

7) Mapper into Document to Binary - map the XML generated above, which ends up in a field called $xml
to $content, and add the static text/xml stuff as content-type.

8) Document to Binary

SIMPLIFICATION

This pipeline could be simplified quite a bit (25 snaps reduced to 14) by removing the initial snaps (which
we needed for routing based on the SOAPAction header). We can route our logic using the SOAP
envelope's contents, rather than the SOAP Action header. This is a non-standard approach, and the
assumptions within make it potentially a bit more dangerous. Note that we still have an "Other" route at
the bottom of the Router.

https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-02-22 at 10.06.52 PM.png?attredirects=0

In this simplified approach, the Router would look like this:

OVER-SIMPLIFICATION?

I considered trying to further simplify using a Conditional snap with these expressions, and mapping an
compound object (AddResponse, SubtractResponse, etc) into a single XML Generator (rather than
mapping just the $answer). This may be an oversimplification, because the pipeline is getting less robust
as we go, but having fewer snaps can make our pipeline simpler and faster at processing requests. It
ends up looking like this:

https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-02-23 at 10.25.27 AM.png?attredirects=0
https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-02-23 at 10.09.28 AM.png?attredirects=0

We could use a Conditional snap ("Calculator Logic" above) to perform the logic, based on the incoming
envelope:

One problem we've got to solve when generating the XML is that the response element includes a
namespace. The namespace (xmlns="http://tempuri.org", see below) can't be added within our Return
Value expressions in the Conditional snap.

To solve this problem, the Velocity Template within the XML Generator can be applied to use the
existence (or not) of different elements ($addResult, $subtractResult, etc) to generate content which
corresponds to whichever operation is being handled.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>

 #if ($addResult)

https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-02-23 at 11.41.34 AM.png?attredirects=0
https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-02-24 at 3.00.50 PM.png?attredirects=0

 <AddResponse
 xmlns="http://tempuri.org/">
 <AddResult>$addResult</AddResult>
 </AddResponse>
 #end

 #if ($subtractResult)
 <SubtractResponse
 xmlns="http://tempuri.org/">
 <SubtractResult>$subtractResult</SubtractResult>
 </SubtractResponse>
 #end

 #if ($multiplyResult)
 <MultiplyResponse
 xmlns="http://tempuri.org/">
 <MultiplyResult>$multiplyResult</MultiplyResult>
 </MultiplyResponse>
 #end

 #if ($divideResult)
 <DivideResponse
 xmlns="http://tempuri.org/">
 <DivideResult>$divideResult</DivideResult>
 </DivideResponse>
 #end

 </soap:Body>
</soap:Envelope>

The Router is there to make sure that one of the Conditional cases got applied -- if not, the Ultra pipeline
will still return "something" and not hang the caller.

So now we're down to 9 snaps, from the original 20. We could have reduced it to just 7 snaps, but we
added some robustness back -- handing for a SOAP Fault response if the caller's request wasn't one of
those we handle. Maybe that's going too far with simplification, but just goes to show how much you can
leverage the snaps when you get creative!

On a final note, a properly, robustly built Ultra pipeline needs to be "fail proof". Error Views have to be
added wherever a failure might occur, because the SnapLogic platform will disable an Ultra task if it fails
more than the task's failure threshold (default is 10). We also want to remember to always return
something to the caller, and the best way is to be sure that we aren't silently eating up errors within the
pipeline.

DO I NEED TO BUILD A SOAP SERVICE USING ULTRA?

Not necessarily:

Yes, if you intend to use the SOAPAction header to route the request (see initial version of the pipeline at
the beginning of this article).

No, if you intend to use the SOAP body (see simplified approach above).

https://sites.google.com/a/snaplogic.com/presales/tips-tricks/creating-a-soap-service-using-an-ultra-pipeline/Screen Shot 2016-02-24 at 3.06.19 PM.png?attredirects=0

