Ingest data from Salesforce application into AWS Cloud Storage (S3)

Contributed by @SriramGopal from Agilisium Consulting


The pipeline is designed to fetch records from CRM application (Salesforce in this case) via API integration and load to cloud storage (Amazon S3 in this case) with partitioning logic. This use case is applicable to Cloud Data Lake initiatives.

This pipeline also includes, the Date based Data Partitioning at the Storage layer and Data Validation trail between source and target.

Control Table - Tracking

The Control table is designed in such a way that it holds the source load type (RDBMS, FTP, API etc.) and the corresponding object name. Each object load will have the load start/end times and the records/ documents processed for every load. The source record fetch count and target table load count is calculated for every run. Based on the status (S-success or F-failure) of the load, automated notifications can be triggered to the technical team.

Control Table Attributes:
  • UID – Primary key
  • SOURCE_TYPE – Type of Source RDBMS, API, Social Media, FTP etc
  • TABLE_NAME – Table name or object name.
  • START_DATE – Load start time
  • ENDDATE – Load end time
  • SRC_REC_COUNT – Source record count
  • RGT_REC_COUNT – Target record count
  • STATUS – ‘S’ Success and ‘F’ Failed based on the source/ target load

Partitioned Load

For every load, the data gets partitioned automatically based on the transaction timestamp in the storage layer (S3)

Configuration

Sources: Salesforce Account
Targets: AWS Storage
Snaps used: Salesforce Read, File Reader, File Writer, Mapper, Router, Copy, JSON Formatter, Redshift Insert, Redshift Select, Redshift - Multi Execute, S3 File Writer, S3 File Reader, Aggregate, JSON Parser

Downloads

IM_API_Salesforce_to_S3_load.slp (31.6 KB)

For any clarifications regarding this pattern please reach out to, snaplogic@agilisium.com